Kindergarten
Integrated ELD/Mathematics
Three Phase Lesson
Integrated ELD/Mathematics Three-Phase Lesson

Grade K – Button Problem

Planning the Lesson: Designing Instruction for Disciplinary Thinking and Learning

<table>
<thead>
<tr>
<th>Focus Question</th>
<th>How can we show numbers in different ways?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task/Problem</td>
<td>Grandma wants to make a puppet for the kindergarten class. She needs 9 buttons. She pulls out the button box to see what’s inside. How many square buttons and how many round buttons will Grandma use? Be ready to explain your thinking to a partner using the connecting words/phrases (first, next, then, last) and math vocabulary (decompose, number partners, total, whole).</td>
</tr>
<tr>
<td>Language Demands</td>
<td>English Learners will need support with the following: Making sense of the problem (MP1) • Interpreting challenging language – puppet, button box, round, square • Understanding math vocabulary – decompose, number partners, total, whole • Identifying what is being asked – “How many square buttons and how many round buttons will Grandma use?” Explaining and justifying their thinking clearly and precisely (MP3 & MP6) • See Language Objective, p. 2 and Supports & Structures (Model Constructive Conversation), p. 5-6.</td>
</tr>
<tr>
<td>Math Content Standard(s)</td>
<td>K.OA.A.2 Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. K.OA.A.3 Decompose numbers less than or equal to 10 into pairs in more than one way, e.g., by using objects or drawings, and record each decomposition by a drawing or equations (e.g., 5 = 2 + 3 and 5 = 4 + 1).</td>
</tr>
</tbody>
</table>

Note: This task was inspired by the book, *The Button Box* by Margarette S. Reid.
PLANNING THE LESSON:
DESIGNING INSTRUCTION FOR DISCIPLINARY THINKING AND LEARNING

<table>
<thead>
<tr>
<th>MATH PRACTICE STANDARD(S)</th>
<th>MP1: Make sense of problems and persevere in solving them (FOCUS MP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MP2: Reason abstractly and quantitatively</td>
</tr>
<tr>
<td></td>
<td>MP3: Construct viable arguments and critique the reasoning of others (FOCUS MP)</td>
</tr>
<tr>
<td></td>
<td>MP4: Model with mathematics</td>
</tr>
<tr>
<td></td>
<td>MP5: Use appropriate tools strategically</td>
</tr>
<tr>
<td></td>
<td>MP6: Attend to precision</td>
</tr>
<tr>
<td></td>
<td>MP7: Look for and make use of structure</td>
</tr>
<tr>
<td></td>
<td>MP8: Look for and express regularity in repeated reasoning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CA ELD STANDARD(S)</th>
<th>Exchanging information/ideas – ELD.PI.K.1.Ex Contribute to class, group, and partner discussions by listening attentively, following turn-taking rules, and asking and answering questions.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Listening actively – ELD.PI.K.5.Ex Demonstrate active listening to read-alouds and oral presentations by asking and answering questions with oral sentence frames and occasional prompting and support.</td>
</tr>
<tr>
<td></td>
<td>Understanding cohesion – ELD.PII.K.2.Ex Apply understanding of how ideas, events, or reasons are linked using a growing number of connecting words or phrases to composing texts in shared language activities guided by the teacher, collaboratively with peers, and with increasing independence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATH CONTENT OBJECTIVE</th>
<th>Students will be able to decompose a number into number partners, record the results, and justify their thinking with a model.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LANGUAGE OBJECTIVE(S)</th>
<th>Students will be able to explain and justify their solution using connecting words and phrases (e.g. first, next, then, last, etc.) and math vocabulary (decompose, number partners, total, whole, etc.) in a conversation with a partner.</th>
</tr>
</thead>
</table>
PLANNING THE LESSON:
DESIGNING INSTRUCTION FOR DISCIPLINARY THINKING AND LEARNING

POSSIBLE SOLUTIONS
Monitor and Guide Disciplinary Learning

Students might use manipulatives, drawings, or equations to represent the following number partners.

<table>
<thead>
<tr>
<th>Number Partners</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 = 9 + 0</td>
<td></td>
</tr>
<tr>
<td>9 = 1 + 8</td>
<td></td>
</tr>
<tr>
<td>9 = 2 + 7</td>
<td></td>
</tr>
<tr>
<td>6 + 3 = 9</td>
<td></td>
</tr>
<tr>
<td>8 + 1 = 9</td>
<td></td>
</tr>
<tr>
<td>5 + 4 = 9</td>
<td></td>
</tr>
<tr>
<td>4 + 5 = 9</td>
<td></td>
</tr>
</tbody>
</table>
Los Angeles Unified School District
MULTILINGUAL AND MULTICULTURAL EDUCATION DEPARTMENT
INTEGRATED ELD/MATHEMATICS THREE PHASE LESSON
GRADE K – Button Problem

PLANNING THE LESSON: DESIGNING INSTRUCTION FOR DISCIPLINARY THINKING AND LEARNING

<table>
<thead>
<tr>
<th>POSSIBLE MISCONCEPTIONS</th>
<th>Students MAY not understand that they are working with a grand total of 9 buttons.</th>
<th>Students MAY not understand the relationship between the number partners and the round/square buttons.</th>
<th>Students MAY not understand that there are multiple number partners and/or ways of representing the same number.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>QUESTIONS TO FOCUS, ASSESS, OR ADVANCE STUDENT THINKING</th>
<th>FOCUSING QUESTIONS</th>
<th>ASSESSING QUESTIONS</th>
<th>ADVANCING QUESTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor and Guide Disciplinary Learning</td>
<td>Student uses a number bond to show one set of correct number partners</td>
<td>What do your numbers represent? How do you know?</td>
<td>How can you show this using a number sentence? What other number partners might work?</td>
</tr>
<tr>
<td></td>
<td>Student pulls out the manipulatives is not sure how to begin</td>
<td>How can you show the square buttons and the round buttons?</td>
<td>Why did you decide to use these number partners?</td>
</tr>
<tr>
<td></td>
<td>Student has one number represented but is unsure how to continue</td>
<td>What do the counters show/represent? How can you show the other part?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Student uses 18 manipulatives to show 9 square buttons and 9 round buttons</td>
<td>What do the counters show/represent? How can you show what Grandma needs?</td>
<td>Does your strategy make sense? Why or why not?</td>
</tr>
</tbody>
</table>
INTEGRATED ELD/MATHEMATICS THREE PHASE LESSON
GRADE K – Button Problem

PLANNING THE LESSON:
DESIGNING INSTRUCTION FOR DISCIPLINARY THINKING AND LEARNING

<table>
<thead>
<tr>
<th>DISCIPLINARY DISCUSSION FOCUS</th>
<th>Targeted Constructive Conversation Skill(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- CREATE ✗ CLARIFY ❌ FORTIFY ❌ NEGOTIATE</td>
</tr>
</tbody>
</table>

MODEL CONSTRUCTIVE CONVERSATION

Prompt Starters:
- What is your idea?
- How did you …?
- Why did you …?
- Can you clarify …?
- What do you think?

Response Starters:
- I used ... to show ...because...
- First, I ...
- Next, I ...
- Then, I...
- Last I, ...

Visual of Solution:

Rationale:
The purpose of the Model Constructive Conversation is to provide students with an explicit model of what their own conversation should sound like. The conversation should exemplify how to apply academic language to address the prompt. Models may be crafted to surface misconceptions as well as correct solution pathways.

In this lesson the visual highlights a possible solution students might produce. The Model Constructive Conversation focuses on the skill of CLARIFYING.
PLANNING THE LESSON:
DESIGNING INSTRUCTION FOR DISCIPLINARY THINKING AND LEARNING

Conversation Prompt: Use your Constructive Conversation Skills to interview your partner about their approach for solving the problem. Focus on **Clarifying** each other’s ideas.

1A: What is your idea?

1B: My idea is that Grandma has 3 square buttons and 6 round buttons. That makes 9 buttons.

2A: **How did you** get 3 square buttons and 6 round buttons? *(MP3)*

2B: First, I used 9 counters to show the total amount of buttons Grandma needs to make the puppet. Next, I split them into two piles. Then, I counted 3 yellow counters in one pile, and 6 red counters in the other pile. *(MP2, MP3, MP4)*

3A: I think you said you used 9 counters to represent the 9 buttons Grandma needs, but I notice you drew circles? **Can you clarify why you did that?**

3B: It would take me too long to draw buttons, so I just drew 3 circles plus 6 more circles to show 9. Then, I labeled them to show 3 round buttons and 6 square buttons. What do you think? *(MP3, MP4)*

4A: I think you said you drew circles to represent 9 buttons. Then, you labeled them to show which ones were round and which ones were square. **Is that what you mean?**

4B: Yes. That’s right. Finally, I made a number bond to show that 3 and 6 are number partners that make 9. **How else can I clarify my thinking?**

5A: I think you said you used a number bond to decompose the 9 into 3 and 6. **Tell me more about** the number bond. **Can you explain** what each number represents in the story?

5B: The 9 is the total number of buttons Grandma needs to make the puppet. The 3 is the round buttons. The 6 represents the square buttons. **Does that make sense?** *(MP2, MP4)*
OPENING

1. Introduce focus question and objectives of the lesson
2. Review Norms of Interaction and Constructive Conversation Skills

TEACHING THE LESSON: DELIVERING INSTRUCTION FOR DISCIPLINARY THINKING AND LEARNING

Say: Today’s math lesson will help us add to our understanding around our focus question.

Focus Question: How can we show numbers in different ways?

Say: At the end of the lesson, we will come back to this question to see if we learned any new ideas that help us understand how____________________.

Refer to Focus Math Practices – MP1 and MP3

Say: Today we will work as mathematicians as we solve the problem. Let’s review our Math Practice goals:

- **MP1** – I can make sense of the problem
- **MP3** – I can explain my thinking and listen/ask questions to understand others

Say: We are going to be doing a lot of talking today. During our conversation let’s make sure we use our Conversation Norms and our Constructive Conversation Skills (point to posters). Since we are going to explain our math thinking, we are going focus on the skills of____________________. You may use the prompt and response starters to help you if you need them.

Say: Let’s review our language objective.

Language Objective:
- explain my thinking to a partner
- use connecting words/phrases
- Use math vocabulary
BEFORE PHASE

1. **Activate prior knowledge**
2. **Pose the problem**
3. **Read to clarify language from the problem**
4. **Ensure that students understand the task and have a plan to begin solving**

Scaffolds:
- Notice & Wonderings
- Three Reads
- Think Aloud
- Constructive Conversation Skills
- Prompt & Response Starters

ACTIVATE PRIOR KNOWLEDGE WITH NOTICE AND WONDERINGS

Show pictures to students that support the context of the problem

Say: What do you notice? What do you wonder?

Have students share out. Make sure to surface the following:

- Students might say "circle" for the buttons, remind them of the vocabulary word, *round*.
- *Round* buttons are circular, *square* buttons have four equal sides.
- Grandma may use either round or square buttons for the puppet.

Have students discuss with a partner. Select one or two volunteers to share their ideas with the class.

Say: How might this connect to math?

POSE THE PROBLEM

Present the problem to students. Either project it, have it charted, or typed out on paper so that every student is able to see the problem.

THREE READS PROTOCOL

Say: We will use our Three Reads Protocol to take time to make sense of the problem and persevere to solve it as Mathematicians do. Why would we want to read the problem several times? How will this help us? (MP1) (Have one or two students share out)

FIRST READ – READ TO UNDERSTAND THE STORY (CLARIFY CONTEXTUAL LANGUAGE)

Say: For our first read we will focus on understanding the story. Listen as I read it to you and try to visualize what’s happening in the problem.

Say: Now that we’ve read the problem, have a Constructive Conversation with your partner to discuss the following questions: What is happening in the problem? What are we trying to find out? How do you know?

Listen to students’ conversations. Then, have a one or two students share out with the class. Use questioning to clarify any unfamiliar language and ensure students understand the following:

- Grandma wants to make a puppet for the Kindergarten class, and needs buttons.
- Some of those buttons will be round—What does *round* mean?
- Some of those buttons will be square—What does *square* mean?
SECOND READ – READ TO UNDERSTAND THE MATH (CLARIFY CONTENT LANGUAGE)

Say: For our second read our focus is to understand the math. You will echo read each sentence after I read it. Visualize the quantities and how they are related.

Say: Now that we’ve read the problem a second time, have a Constructive Conversation with your partner to discuss the following questions: What does each number in the problem represent? How will these numbers help us solve the problem? (MP1, MP2)

Listen to students’ conversations. Then, have a one or two students share out with the class. Use questioning to clarify any unfamiliar language and ensure students understand the following:
- Grandma will need exactly 9 buttons
- Some of those 9 buttons may be round
- Some of those 9 buttons may be square

THIRD READ – READ TO MAKE A PLAN (FOSTER METACOGNITION)

Say: For our third read our focus is to begin thinking of a plan to solve this problem. We will read chorally in one voice. As we read, think about all the important information that will help you solve the problem. Visualize possible ways to begin solving the problem.

Say: Now that we’ve read the problem a third time, I want you to use your think time to begin planning your approach to this problem.

Give students think time, then do a “Think Aloud” to model how to think of a plan to solve.

Say: I’m thinking of similar problems that we’ve solved in the past that might help me. I remember some of the strategies we’ve used to decompose numbers and I might use one of those strategies. I know I have to model or represent the buttons. Hmmm…what manipulatives should I use? Perhaps dot counters, or maybe I can use linking cubes, or teddy bear counters. What tool would be the most helpful for this situation? I think I will begin by… (MP1, MP5)

Say: Mathematicians take their time to make sense of the problem and then make a plan to approach the problem, just as we did right now. This is especially important to do when a problem is challenging. Now we are ready to begin solving the problem.
DURING PHASE

1. Let go! Allow for productive struggle time
2. Circulate as students work independently first
3. Ask questions to focus, assess, and advance student thinking
4. Circulate as students work in pairs or in groups
5. Collect a language sample
6. Decide which solutions will be selected for sharing.

Scaffolds:
- Math Interview
- Model Constructive Conversation
- Constructive Conversation Skills
- Prompt & Response Starters
- Fishbowl

• STUDENTS SOLVE THE PROBLEM

Hand out materials (paper, manipulatives, etc.) and provide students with 5-10 minutes of independent struggle time to solve the problem and represent their solutions.

Say: Now that we’ve made sense of the problem and thought of a plan to solve it, each of you will have work on solving the problem independently. Remember to show your thinking using numbers, pictures, symbols, and words. *(MP1, MP2, MP4)*

• TEACHER CIRCULATES AS STUDENTS WORK INDEPENDENTLY

Circulate and provide individual students with support as needed; prioritize students who need help with an entry point into the problem. A good starting point with any student is to say, “Tell me about what you did here” as you point to their work.

Please refer to the “Planning the Lesson” section of this lesson plan for examples of questions to focus, assess, or advance student thinking.

• TEACHER DISPLAYS VISUAL OF SOLUTION AS STUDENTS LISTEN TO THE MODEL CONSTRUCTIVE CONVERSATION

Introduce the Model Constructive Conversation. See p. 6 to find the complete transcript.

Say: Let’s come back together. Some of you may be finished and others may not be finished; that’s fine. What is most important, is that you are making sense of the problem and have begun trying to solve it. Now, we will share our thinking with a partner to learn about different ways to solve this problem. Let’s review what we need to do as we discuss our thinking with each other.

Review the LANGUAGE OBJECTIVE with students and present the model.

Say: Let’s review the language objective (point to charted language objective as students read it). I want you to all listen carefully to this conversation and listen for the parts where the students Clarify their thinking. Use your hand signals when you hear language for Clarifying.

Use one of the following options to present the Model Constructive Conversation:
- The teacher and a student each read a part
- A student and another student each read a part
- The teacher uses puppets to read each part
- The teacher and another adult each read a part
- Pre-recorded audio of a male and female each reading a part

Repeat portions of the Model as needed to highlight CLARIFYING Language.
TEACHER DEBRIEFS THE MODEL CONSTRUCTIVE CONVERSATION
Say: Let’s think about the conversation we just heard. Pose the following questions pausing to have one or two students share out for each.

- What specific language did we use to explain our thinking?
- What specific language did we use to make our ideas clearer?
- What specific language did we use to support our ideas with evidence?

MATH INTERVIEW (MP3, MP6)

ROUND 1 – ONE STUDENT INTERVIEWS THE OTHER, THEN STUDENTS SWITCH ROLES (COLLECT A LANGUAGE SAMPLE)

Say: Now, it’s time to begin our “Math Interview”. Remember some of you will interview your partner first and some of you will be explaining your thinking and answering questions first. Then you will switch roles and go through the process again.

Say: Don’t forget to focus on clarifying ideas during your conversation. I will also be listening to your conversations to see who is using connecting words/phrases and math vocabulary. Remember to use your Prompt and Response Starters to assist you if you need to use them during your interview. Take some time to review them with your partner.

Call on one or two students to share one prompt starter they might use and which response starter would be useful for a reply.

Say: I will come around and listen to some of your conversations. I might also be asking you and your partner some questions to understand your thinking. You may begin.

Circulate and select one pair of students to COLLECT A LANGUAGE SAMPLE. Bring class back together after most students have interviewed each other.

FISHBOWL OF STUDENT INTERVIEW

Invite a pair of students to come demonstrate how they Interviewed each other.

Say: I heard _____ and _____ doing their best to Clarify and Fortify their ideas during their math interview. Let’s listen to their conversation and try to learn from their exchange.

Have a student pair demonstrate a few exchanges as the rest of the class listens. Provide positive feedback that may include the following:

- Making ideas clearer
- Supporting ideas with evidence (referring to model/representation)
- Use of academic language
• **ROUND 2 – STUDENTS INTERVIEW ANOTHER PARTNER, THEN SWITCH ROLES** (DECIDE WHICH SOLUTIONS TO SHARE IN THE AFTER PHASE)

 Say: Now, it’s time to begin our second round of “Math Interview”. Remember some of you will interview your partner first and some of you will be explaining your thinking and answering questions first. Then you will switch roles and go through the process again.

 Say: I will come around and listen to some of your conversations. I might also be asking you and your partner some questions to understand your thinking. You may begin.

 As you circulate, consider which solutions (two or three) you will select for your targeted whole-class discussion (MATH SUMMIT) in the After Phase. Make sure to select solutions based on the objectives of the lesson and the students’ instructional needs.

• **STUDENTS TAKE TIME TO REFLECT**

 Say: As mathematicians we know how important it is to explain our thinking and try to understand the thinking of others (MP3). This helps us really learn and understand important math ideas. I want you to take some time to reflect after going through the math interview process. Use your think time to consider the following questions: What did you learn? What new questions might you have?

 You may have students:
 - ✓ Share their reflection with a partner
 - ✓ Write in their math journal
 - ✓ Write on a post it
INTEGRATED ELD/MATHEMATICS THREE PHASE LESSON
GRADE K – Button Problem

AFTER PHASE

1. Order selected solutions strategically
2. Facilitate the sharing of two or more solution paths
3. Ask questions to facilitate a student centered discussion
4. Identify patterns and make mathematical generalizations
5. Formalize the main ideas
6. Identify next steps and future problems.

Scaffolds:
- Math Summit
- Constructive Conversation Skills
- Prompt & Response Starters

MATH SUMMIT (MP1, MP2, MP3, MP4, MP6)
Say: Mathematicians, let’s begin our Math Summit. Who can remind us what we do during our Math Summit and why? (Have one or two students share out.)

Say: That’s right. Math Summit is our opportunity to focus on one or two solutions and try to understand the math together. Do your best to use academic language throughout our discussion and to use your prompt and response starters if you need them.

- STUDENTS INTERPRET THE FIRST SOLUTION
 Present the first solution for students to interpret quietly to themselves.
 Say: Here is one solution. Use your think time. What do you notice about the solution? Turn and talk.

 Invite the student to come up to explain her/his solution to the class.
 Say: This is actually ______’s solution. Please come up to explain your thinking. As the audience, the rest of us will listen carefully and try to understand your classmate’s explanation. Be ready to ask questions and discuss. How did you approach the problem? What is the first step you took?

 Use guiding questions to provide the student support as s/he explains her/his solution to the class.

 Say: So, how did ______ solve the problem? What was her/his approach? Turn and talk to your partner. (Have one or two students share out)

 Have one or two students ask questions of the presenting student.
 Say: Does anyone have any questions for ______?

- STUDENTS INTERPRET THE SECOND AND/OR THIRD SOLUTION
 Repeat the process with a second and/or third solution:
 ✓ Students interpret the solution
 ✓ Students discuss what they notice about the solution
 ✓ Student comes up to explain her/his approach while teacher provides guidance
 ✓ Students discuss what they understood about her/his explanation
 ✓ A few students share out their understanding of the explanation
 ✓ A few students ask questions of the presenting student

- STUDENTS COMPARE AND CONNECT SOLUTIONS
 Facilitate a discussion where students compare and connect solutions shared. Make sure to identify similarities and differences across the solutions to highlight key mathematical ideas for the lesson.

 Say: Mathematicians, how are these two solutions similar or different? Turn and talk to your partner. Have a few students share out; accept multiple responses.
STUDENTS REVISE OR ADD TO THEIR SOLUTIONS AND SUMMARIZE THEIR LEARNING

Say: Take a few minutes to consider what you learned from the other mathematicians in the room today, and either revise or add to your original solution using a pen. Don’t erase your original thinking. (Circulate and support students as needed while they revise or add to their solutions.)

Say: Let’s summarize what we have learned from our lesson today. We saw two different strategies for solving this problem. Which solution path did you prefer? Why? Talk to your partner.

Have one or two students share out and make sure to highlight the following key mathematical ideas:

- Numbers can be decomposed and represented in various ways using number partners
- You can represent number partners using manipulatives

WRAP-UP & NEXT STEPS

1. Review focus question and lesson objectives
2. Allow for students to self-assess and monitor progress toward lesson objectives
3. Give feedback to students on objectives that will move their learning forward
4. Close lesson and introduce topic for next lesson

REVIEW FOCUS QUESTION AND LESSON OBJECTIVES (should be charted/posted on the board)

Say: Let’s go back to our focus question. How did our learning today add to our understanding about decomposing numbers? Let’s add these ideas to our chart.

Allow for students to self-assess and monitor progress toward lesson objectives

Say: As we review our lesson objectives out-loud, give me a thumbs-up signal if you feel you did this today during our math lesson.

Read each objective out-loud and watch for student self-assessment. Then give feedback to students so students know what they did well and what areas need improvement.

Say: I noticed many of you were… Now I want you to think of one thing you will try to improve on for next time. Who would like to share?

Close the lesson and introduce the topic for the next lesson.

Say: Based on our learning today, our next steps will be to work on…
ADDITIONAL RESOURCES

TASK/PROBLEM:
Grandma wants to make a puppet for the kindergarten class. She needs 9 buttons. She pulls out the button box to see what’s inside. How many square buttons and how many round buttons will Grandma use?

Be ready to explain your thinking to a partner using connecting words/phrases (first, next, then, last, because, etc.) and math vocabulary.
What do you notice?
What do you wonder?

round button
square button
VISUAL OF SOLUTION FOR MODEL CONSTRUCTIVE CONVERSATION

round | square

9 = 3 + 6
Conversation Prompt: Use your Constructive Conversation Skills to interview your partner about their approach for solving the problem. Focus on Clarifying and Fortifying each other’s ideas.

A: What is your idea?

B: My idea is that Grandma has 3 square buttons and 6 round buttons. That makes 9 buttons.

A: How did you get 3 square and 6 round buttons?

B: First, I used 9 counters to show the total amount of buttons Grandma needs to make the puppet. Next, I split them into two piles. Then, I counted 3 yellow counters in one pile, and 6 red counters in the other pile.

A: I think you said you used 9 counters to represent the 9 buttons Grandma needs, but I notice you drew circles? Can you clarify why you did that?

B: It would take me too long to draw buttons, so I just drew 3 circles plus 6 more circles to show 9. Then, I labeled them to show 3 round buttons and 6 square buttons. What do you think?

A: I think you said you drew circles to represent 9 buttons. Then, you labeled them to show which ones were round and which ones were square. Is that what you mean?

B: Yes. That’s right. Last, I made a number bond to show that 3 and 6 are number partners that make 9. How else can I clarify my thinking?

A: I think you said you used a number bond to decompose the 9 into 3 and 6. Tell me more about the number bond. Can you explain what each number represents in the story?

B: The 9 is the total number of buttons Grandma needs to make the puppet. The 3 is the round buttons. The 6 represents the square buttons. Does that make sense?
Prompt Starters:

• What did you use to solve the problem?
• What did you do first?
• What did you do next?
• And then, what did you do?
• Why did you...?

Response Starters:

• I used...
• First, I...
• Next, I...
• Then, I...
• Lastly, I...
• Finally, I...