<table>
<thead>
<tr>
<th>Math Practice</th>
<th>Select a Math Task that...</th>
<th>Make Teacher Moves that...</th>
</tr>
</thead>
</table>
| #1 Make sense of problems and persevere in solving them. | • Has more than one entry point
• Has multiple solution paths
• Cognitively challenging, not obvious, not overly-scaffolded
• Requires balance of procedural fluency and conceptual understanding
• Requires students to justify solution using other solution methods | • Structure individual think time and student-student talk time.
• Allow time for students to struggle (make sense, get-stuck-and-persevere), without “rescuing.”
• Probe student reasoning and justification.
• Build in time for metacognition (think about and discuss solution process). |
| #2 Reason abstractly and quantitatively. | • Has a relevant, realistic context
• Can be expressed with multiple representations
• Requires students to frame solution in a context | • Expect students to interpret, model, and connect multiple representations.
• Prompt students to articulate connections between context and representations.
• Provide minimal scaffolding to support connections to the context. |
| #3 Construct viable arguments and critique the reasoning of others. | • Is clearly stated
• Is grade level appropriate
• Avoids single steps or routine algorithms | • Help students differentiate between assumptions and logical conjectures.
• Model and prompt students to evaluate peer arguments.
• Expect students to formally justify their conjectures. |
| #4 Model with mathematics. | • Illustrates the relevance of the math
• Requires students to...
 o identify variables and extraneous information
 o compute & interpret results, report with multiple representations, and justify reasonableness of results | • Expect students to (or ask questions to help students) identify variables and procedures.
• Expect students to (or facilitate discussions) evaluate the appropriateness of the model. |
| #5 Use appropriate tools strategically. | • Lends itself to (or requires) using multiple learning tools
• Gives students opportunity to develop (or requires the use of) fluency in estimation and mental computations | • Allow students to choose (and state why) appropriate learning tools.
• Encourage creative tool alternatives.
• Expect (or model) error checking by estimation. |
| #6 Attend to precision. | • Contains precise, not wordy, instructions
• Includes assessment criteria for communication of ideas | • Demonstrate consistent expectation for precision in communication and solutions.
• Encourage student identification of incomplete aspects of process or solution. |
| #7 Look for and make use of structure. | • Requires students to analyze task before automatically applying an algorithm
• Requires students to identify and compare the merits of different approaches | • Question students about...
 o ...reasonable intermediate results?
 o ...justify algorithm or solution path?
• Prompt students to identify mathematical structures in symbolic expressions, geometric figures, graphs, tables, etc. |
| #8 Look for and express regularity in repeated reasoning. | • Lends itself to (or requires) recognition of pattern or structure
• Connects to prior knowledge or future concepts in a cumulative, but non-routine way | • Help students understand why procedural shortcuts work.
• Prompt students (or model) to make explicit, conceptual connections between prior and/or future concepts. |

1 Adapted from “Rubric—Implementing Standards for Mathematical Practice,” Park City Math Institute, 2011