DOMAIN: Operations and Algebraic Thinking

CLUSTER: Write and interpret numerical expressions. s/a

Big Idea: For a given set of numbers there are relationships that are always true, called properties, and these are the rules that govern arithmetic and algebra.

Enduring Understandings: There is an agreed upon order for which operations in a numerical expression are performed.

Big Idea: Mathematical situations and structures can be translated and represented abstractly using variables, expressions, and equations.

Enduring Understandings: Some mathematical phrases can be represented using a variable in an algebraic expression.

Standards for Mathematical Content

Standards for Mathematical Practice

Resources

Assessments

<table>
<thead>
<tr>
<th>Standards for Mathematical Content</th>
<th>Standards for Mathematical Practice</th>
<th>Resources</th>
<th>Assessments</th>
</tr>
</thead>
</table>
| 5.OA.1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. | 5.MP.1 Make sense of problems and persevere in solving them. | engage® https://www.engageny.org/ccls-math/5oa1 | My Math Assessment Master
• Ch. 7, pp. 160-180 |
| | 5.MP.2 Reason abstractly and quantitatively. | Illustrative Mathematics
• Watch Out for Parentheses http://www.illustrativemathematics.org/illustrations/555
• Using Operations and Parentheses http://www.illustrativemathematics.org/illustrations/1596 | My Math Think Smart for the SBAC
• Chapter 7 Test, p. 89
• Chapter 7 Performance Task, p. 137 |
| | 5.MP.3 Construct viable arguments and critique the reasoning of others. | NC Department of Public Instruction
• 5.OA.1 Task 1.doc, Target Number
• 5.OA.1 Task 2.doc, Expression Sets
• 5.OA.1 Task 3.doc, Leigh’s Strategy http://3-5cctask.ncdpi.wikispaces.net/5.OA.1-5.OA.2 | My Math eAssessment
• 7-1 Hands On: Numerical Expressions
• 7-2 Order of Operations
• 7-4 Problem-Solving Investigation, Strategy: Work Backward |
Standards for Mathematical Content

5.OA.2 Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as 2 x (8 + 7).

Examples:
- Express a whole number in the range 2 - 50 as a product of its prime factors. For example, find the prime factors of 24 and express 24 as 2 x 2 x 2 x 3.
- Recognize that 3 x (18932 + 921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product.

Standards for Mathematical Practice

- **MP1:** Make sense of problems and persevere in solving them.
- **MP2:** Reason abstractly and quantitatively.
- **MP3:** Construct viable arguments and critique the reasoning of others.
- **MP4:** Model with mathematics.
- **MP5:** Use appropriate tools strategically.
- **MP6:** Attend to precision.
- **MP7:** Look for and make use of structure.
- **MP8:** Look for and express regularity in repeated reasoning.

Resources

- **engage™**
 - https://www.engageny.org/ccls-math/5oa2
- **Illustrative Mathematics**
 - Words to Expressions 1
 - http://www.illustrativemathematics.org/illustrations/556
 - Video Game Scores
 - http://www.illustrativemathematics.org/illustrations/590
 - Comparing Products
 - www.illustrativemathematics.org/illustrations/139
 - Seeing Is Believing
 - http://www.illustrativemathematics.org/illustrations/1222
- **NC Department of Public Instruction**
 - 5.OA.2 Task 3.doc, Seeing is Believing
 - http://3-5cctask.ncdpi.wikispaces.net/5.OA.1-5.OA.2
- **My Math**
 - 7-3 Write Numerical Expressions
 - Water Works, Real-World Problem Solving Readers Teacher Guide, p. 15
- **My Math eAssessment**
- **My Math Assessment Master**
 - Ch. 7, pp. 160-180
- **My Math Think Smart for the SBAC**
 - Chapter 7 Test, p. 89
 - Chapter 7 Performance Task, p. 137

Assessments

- **My Math Assessment Master**
 - Ch. 7, pp. 160-180
- **My Math Think Smart for the SBAC**
 - Chapter 7 Test, p. 89
 - Chapter 7 Performance Task, p. 137
CLUSTER: Analyze patterns and relationships.

Big Idea: Relationships can be described and generalizations made for mathematical situations that have numbers or objects that repeat in predictable ways. For some relationships, mathematical expressions and equations can be used to describe how members of one set are related members of a second set.

Enduring Understandings: Patterns can sometimes be used to identify a relationship between two quantities. Some real-world quantities have a mathematical relationship; the value of one quantity can be found if you know the value of the other quantity. Patterns that repeat in predictable ways may be used to identify relationships.

<table>
<thead>
<tr>
<th>STANDARDS FOR MATHEMATICAL CONTENT</th>
<th>STANDARDS FOR MATHEMATICAL PRACTICE</th>
<th>RESOURCES</th>
<th>ASSESSMENTS</th>
</tr>
</thead>
</table>
| 5.OA.3 Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule “Add 3” and the starting number 0, and given the rule “Add 6” and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so. | **MP1** Make sense of problems and persevere in solving them. **MP2** Reason abstractly and quantitatively. **MP3** Construct viable arguments and critique the reasoning of others. **MP4** Model with mathematics. **MP5** Use appropriate tools strategically. **MP6** Attend to precision. **MP7** Look for and make use of structure. **MP8** Look for and express regularity in repeated reasoning. | engage\(^m\)rgry: https://www.engageny.org/ccls-math/5oa3 NC Department of Public Instruction: 5.OA.3 Task 1.doc; Dan’s Bicycle 5.OA.3 Task 2.doc; Farmer Brown’s Barn http://3-5cctask.ncdpi.wikispaces.net/5.OA.3 | **My Math** Assessment Master
• Ch. 7, pp. 160-180
My Math Think Smart for the SBAC
• Chapter 7 Test, p. 89
• Chapter 7 Performance Task, p. 137
My Math eAssessment |
| My Math
• 7-5 Hands On: Generate Patterns
• 7-6 Patterns
• 7-9 Graph Patterns |
Essential Questions

1. How is the value of a numerical expression found?
2. How can a rule be found and written as an expression?
3. How are rules for number patterns represented on the coordinate plane?
4. How are patterns used to solve problems?

Language Objectives and Supports

1. Students will explain orally and in writing the sequences they followed in determining the values of numerical expressions, using target vocabulary and complex sentences. *(Teacher may refer students to math word wall for support.)*

2. Students will explain in writing how a rule can be found and written as an expression by using indicative verbs in declarative sentences. *(Teachers may allow students time to orally rehearse their answer with a partner before engaging in writing.)*

3. Students will sequentially explain to a small group how to graph ordered pairs that follow a rule using targeted mathematical language and complex sentences. *(Teacher may refer students to math word wall for support.)*

Key Vocabulary

- Algebraic expressions
- Coordinate plane
- Data
- Distributive Property
- Evaluate
- Graph
- Linear Equation
- Numerical Expression
- Order of operations
- Ordered pair
- Origin
- Parenthesis (parentheses)
- Perpendicular
- Sequence
- Table
- Term
- Variable
- x-axis
- y-axis
- x-coordinate
- y-coordinate
DAILY/WEEKLY ROUTINES

- Head Problems
- Number Talks
- SuDoku helps develop logical reasoning and provides a sense of achievement. Example site: http://www.dailysudoku.com/sudoku/kids/
- Daily Oral Language with CGI Problems
- Get the Goof from Success for All: Teacher posts student work with an error, and the students write and explain the error.

LITERATURE CONNECTIONS

- Amanda Bean’s Amazing Dream by Cindy Neuschwander
- Two of Everything by Lily Toy Hong
- The Fly on the Ceiling: A Math Myth by Dr. Julie Glass
- Spaghetti and Meatballs for All by Marilyn Burns
- Wild Fibonacci: Nature’s Secret Code Revealed by Joy Hulme
- How Do You Know What Time It Is? By Robert E. Wells

DIFFERENTIATION

<table>
<thead>
<tr>
<th>FRONT LOADING<sup>1</sup></th>
<th>ENRICHMENT<sup>2</sup></th>
<th>INTERVENTION<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>My Math</td>
<td>Illustrative Mathematics</td>
<td>My Math</td>
</tr>
<tr>
<td>My Math Words, p. 474</td>
<td>Bowling for Numbers</td>
<td>7-2, Tier 2 Hands-On Activity, p. 491A</td>
</tr>
<tr>
<td>My Vocabulary Cards, p. 474</td>
<td>http://www.illustrativemathematics.org/illustrations/969</td>
<td>7-3, Tier 2 Hands-On Activity, p. 497A</td>
</tr>
<tr>
<td>My Foldables, p. 477</td>
<td>7-2, Extend, p. 491A</td>
<td>7-4, Tier 2 Hands-On Activity, p. 503A</td>
</tr>
<tr>
<td>7-2, ELL Instructional Strategy, p. 487A</td>
<td>7-3, Extend, p. 497A</td>
<td>Ch. 7 Formative Assessment, Tier 2 Strategic Intervention, p. 506A</td>
</tr>
<tr>
<td>7-3, ELL Instructional Strategy, p. 493A</td>
<td>7-4, Extend, p. 503A</td>
<td>7-6, Tier 2 Hands-On Activity, p. 517A</td>
</tr>
<tr>
<td>7-4, ELL Instructional Strategy, p. 499A</td>
<td>Ch. 7 Formative Assessment, Extend, p. 506A</td>
<td>7-8, Tier 2 Hands-On Activity, p. 529A</td>
</tr>
<tr>
<td>7-6, ELL Instructional Strategy, p. 513A</td>
<td>7-6, Extend, p. 517A</td>
<td>7-9, Tier 2 Hands-On Activity, p. 535A</td>
</tr>
<tr>
<td>7-8, ELL Instructional Strategy, p. 525A</td>
<td>7-8, Extend, p. 529A</td>
<td></td>
</tr>
<tr>
<td>7-9, ELL Instructional Strategy, p. 531A</td>
<td>7-9, Extend, p. 535A</td>
<td></td>
</tr>
</tbody>
</table>

Key:

1: Front Loading refers to materials that can be used before the lesson begins to prepare students for success, which may be helpful for English learners, students with disabilities or low achieving students.

2: Enrichment refers to materials that can be used with students who are ready to have their thinking extended, which may be helpful for gifted and talented and high achieving students, or any students who are ready for more depth and complexity.

3: Intervention refers to materials that can be used after the lessons with students who are needing additional positive experiences with the mathematics, low achieving students who would benefit from another approach, or students who have gaps in their knowledge.