Introduction to the Document:
Welcome to the Los Angeles Unified School District’s Elementary Mathematics CCSS Curriculum Map for Grade 5. The Map is intended to be a one-stop tool for teachers, administrators, parents, and other school support personnel. It blends and organizes Common Core State Standards in Mathematics, textbook topics that address those standards, additional resources and Instructional Blocks into one easy-to-read resource. The Map is a living document—it is neither set in stone for all time nor is it perfect. Teachers and other users are encouraged to provide on-going feedback as to its accuracy, usability, and content.

Organization of the Document:
This Curriculum Map for Mathematics has been organized in several ways to provide flexibility to teachers in planning instruction. Teachers and other users are encouraged to review the various versions and to choose the one that best fits their instructional planning needs.

Under the section Curriculum Maps and Graphic Organizers by Domain, the Mathematical Content and Practice standards are listed as they are found in the Common Core State Standards. In this section, teachers and other users will be able to see at a glance the mathematics domains, clusters, and standards for the grade level, and in which textbook chapters the standards can be found.

Under the section Scope and Sequence in the Alignment Document, the standards are listed in the developmental sequence outlined in the various textbook series.

Symbols and Footnotes:
Additional key information has been embedded into this guide to assist teachers and others in instructional decision-making.
General Calendar for Instruction and Assessment:
Working with your grade level at your school site, your goal is to ensure full instruction and assessment of the grade level standards by the end of the school year.

Using the Mathematics Curriculum Map:
The guide can be thought of as a menu. It cannot be expected that one would do every lesson and activity from the instructional resources provided. To try to teach every lesson or use every activity would be like ordering everything on a menu for a single meal. It is not a logical option. Nor is it possible given the number of instructional days and the quantity of resources. And, like a menu, teachers select, based on instructional data, which lessons best fit the needs of their students – sometimes students need more time with a concept and at other times, less.

Look at the Scope and Sequence listings. From there, teachers would map out how much time they feel is needed to teach the concepts within the block based on the data of their students’ needs. For example, some classes may need more time devoted to developing addition concepts, while another class at the same grade level may need more focused time on Operations and Algebraic Thinking.

Then look at the Curriculum Maps and Graphic Organizers by Domain. Match the standards and the recommended Resources.

Look at the assessment options. Discuss with your grade level and administration at your school site what assessments you will use, following the guidance of Reference Guide REF-6507.

The starting point for instructional planning is the standards. The textbook resources are just the first tools for teachers in helping to build mathematical understanding. Like going to a restaurant specializing in customer service, there may be times one wishes to order “off-the-menu”. There are hundreds of resources available, both publisher- and teacher-created, that may be used to best teach a concept or skill. Collaborative planning, both within and among grade levels, is strongly encouraged in order to design effective instructional
programs for students.

A Guide to the Column Headings:

The **Domains** are the larger groups of related standards and clusters.

The **Clusters** are groups of related standards.

The **Standards for Mathematical Content** define what students should know and be able to do.

The **Standards for Mathematical Practice** describe the varieties of expertise that mathematics educators at all levels should seek to develop in their students. They are the *habits of mind* to be developed, along with the content, in effective mathematics instruction. In any math task, all eight standards may be present, but some practice standards are more naturally paired with some content standards, and those matches are called out here.

The **Resources** are meant to be teacher-guided, whole class activities or are independent of the teacher, and can take place in small groups, pairs, or individually.

The **Assessments** are intended to assist the teacher in providing data to guide instruction. Assessments are considered to be formative throughout the year, if remediation is provided.

The **Domain Legend** explains the key that sorts the clusters into Major (▲), and Supporting or Additional (s/a), as used by the testing services Smarter Balanced and PARCC. The standards will be assessed with 75% of the assessment on the major clusters and 25% on the supporting and additional clusters. There may be a temptation to minimize instruction of the additional clusters, but it is important to teach all the standards, as this may be the only grade level where the standard is taught.

Additional Support contains:
• **Language Objectives** to assist with English Learners and Standard English Learners
• **Enduring Understandings** which are the Big Ideas in Mathematics
• **Essential Questions** which engage the students with interacting with the Big Ideas
• **Key Vocabulary**

Daily Routines call out the classroom practices within the particular Domain. They may last through the whole year, or only through that Instructional Block or Domain.

Differentiation (_BOOK) falls into three categories:

• **Front Loading**: strategies to make the content more accessible to all students, including EL, SEL and students with special needs.
• **Enrichment**: activities to extend the content for all learners, as all learners can have their thinking advanced, and to support the needs of GATE students.
• **Intervention**: alternative methods of teaching the standards, in which all students can have a second opportunity to connect to the learning, based on their own learning style.

Additional Documents:

• **Mathematics Framework for California Public Schools** provides guidance for implementing the standards, including instructional strategies, technology for instruction and criteria for evaluating instructional materials. It can be found at: http://www.cde.ca.gov/ci/ma/cf/draft2mathfwchapters.asp
• **Progressions Document for the Common Core State Standards** from the University of Arizona describes the progressions of a topic across grade levels. It can be found at: http://ime.math.arizona.edu/progressions/
• **Table 1 of the Common Core State Standards for Mathematics** gives specific examples of the common addition and subtraction situations, which may be helpful for kindergarten. It can be found on page 88 of the Glossary: http://www.corestandards.org/wp-content/uploads/Math_Standards.pdf

An **Appendix** to the Curriculum Maps includes:
• **First Ten Days of School** to introduce classroom management and new learning opportunities, including problem-solving strategies and daily routines.

Critical Areas:

In Grade 5, instructional time should focus on three critical areas: (1) developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions); (2) extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations; and (3) developing understanding of volume.

• Students apply their understanding of fractions and fraction models to represent the addition and subtraction of fractions with unlike denominators as equivalent calculations with like denominators. They develop fluency in calculating sums and differences of fractions, and make reasonable estimates of them. Students also use the meaning of fractions, of multiplication and division, and the relationship between multiplication and division to understand and explain why the procedures for multiplying and dividing fractions make sense. (Note: this is limited to the case of dividing unit fractions by whole numbers and whole numbers by unit fractions.)

• Students develop understanding of why division procedures work based on the meaning of base-ten numerals and properties of operations. They finalize fluency with multi-digit addition, subtraction, multiplication, and division. They apply their understandings of models for decimals, decimal notation, and properties of operations to add and subtract decimals to hundredths. They develop fluency in these computations, and make reasonable estimates of their results. Students use the relationship between decimals and fractions, as well as the relationship between finite decimals and whole numbers (i.e., a finite decimal multiplied by an appropriate power of 10 is a whole number), to understand and explain why the procedures for multiplying and dividing finite decimals make sense. They compute products and quotients of decimals to hundredths efficiently and accurately.

• Students recognize volume as an attribute of three-dimensional space. They understand that volume can be measured by finding the total number of same-size units of volume required to fill the space without gaps.
or overlaps. They understand that a 1-unit by 1-unit by 1-unit cube is the standard unit for measuring volume. They select appropriate units, strategies, and tools for solving problems that involve estimating and measuring volume. They decompose three-dimensional shapes and find volumes of right rectangular prisms by viewing them as decomposed into layers of arrays of cubes. They measure necessary attributes of shapes in order to determine volumes to solve real world and mathematical problems.

Special Thanks: The CCSS-aligned Curriculum Maps were updated under the auspices of Dr. Frances Gipson, Chief Academic Officer, and Katie McGrath, Director of Elementary Instruction. There are many individuals who participated in the creation of this document, including reviewing and field-testing. We wish to thank everyone, especially: Gerardo Loera, Susan Tandberg, Mark Duncan, Charity Weber, Charles Cho, Barbara Goodwin, Norma Cantu, Karen Grigsby, Jose Dorado, Laura Acosta, Carina Tsuneta, Daniel Kim, Dr. Jared Dupree, Dina Williams, Michael Blount, Beverly Nichols, Caroline Piangerelli, Shirley Guzman, Dr. Philip Ogbuehi, Ricardo Romero, Erin Cuenca, Christie Caric, Anna Arredondo-Kim, Dena Teachesaumers, Lara Cohen, Barbara Avilez, Diana Inouye, Rachel Sawyer, Evelyn Samos, Sherrie Dunbridge-Ryan, Michelle Staine, Steve Allen, Monica Esparza, Lisa Melton, Lisa Saldivar, and Lisa Ward.