Standards for Mathematical Practices - “Student Look-fors”

<table>
<thead>
<tr>
<th>Mathematical Topic(s):</th>
<th>Teacher(s):</th>
<th>Course/Period:</th>
<th>Start/End Times:</th>
</tr>
</thead>
</table>

1. Make sense of problems and persevere in solving them
- [] Understand the meaning of the problem and look for entry points to its solution
- [] Analyze information (givens, constraints, relationships, goals)
- [] Make conjectures and plan a solution pathway
- [] Monitor and evaluate the progress and change course as necessary
- [] Check answers to problems and ask, “Does this make sense?”

Comments:

2. Reason abstractly and quantitatively
- [] Make sense of quantities and relationships in problem situations
- [] Represent abstract situations symbolically and understand the meaning of quantities
- [] Create a coherent representation of the problem at hand
- [] Consider the units involved
- [] Flexibly use properties of operations

Comments:

3. Construct viable arguments and critique the reasoning of others
- [] Use definitions and previously established causes/effects (results) in constructing arguments
- [] Make conjectures and use counterexamples to build a logical progression of statements to explore and support their ideas
- [] Communicate and defend mathematical reasoning using objects, drawings, diagrams, actions
- [] Listen to or read the arguments of others
- [] Decide if the arguments of others make sense and ask probing questions to clarify or improve the arguments

Comments:

4. Model with mathematics.
- [] Apply prior knowledge to solve real world problems
- [] Identify important quantities and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas
- [] Make assumptions and approximations to make a problem simpler
- [] Check to see if an answer makes sense within the context of a situation and change a model when necessary

Comments:

5. Use appropriate tools strategically.
- [] Make sound decisions about the use of specific tools. Examples might include:
 - [] Calculator
 - [] Concrete models
 - [] Digital Technology
 - [] Pencil/paper
 - [] Ruler, compass, protractor
- [] Use technological tools to visualize the results of assumptions, explore consequences and compare predications with data
- [] Identify relevant external math resources (digital content on a website) and use them to pose or solve problems
- [] Use technological tools to explore and deepen understanding of concepts

Comments:

6. Attend to precision.
- [] Communicate precisely using clear definitions
- [] State the meaning of symbols, carefully specifying units of measure, and providing accurate labels
- [] Calculate accurately and efficiently, expressing numerical answers with a degree of precision
- [] Provide carefully formulated explanations
- [] Label accurately when measuring and graphing

Comments:

7. Look for and make use of structure.
- [] Look for patterns or structure, recognizing that quantities can be represented in different ways
- [] Recognize the significance in concepts and models and use the patterns or structure for solving related problems
- [] View complicated quantities both as single objects or compositions of several objects and use operations to make sense of problems

Comments:

8. Look for and express regularity in repeated reasoning
- [] Notice repeated calculations and look for general methods and shortcuts
- [] Continually evaluate the reasonableness of intermediate results (comparing estimates) while attending to details and make generalizations based on findings

Comments:

Additional notes:

Non-evaluative visitor(s):

Date:

RAFT 5/2011 Adapted from Common Core State Standards for Mathematics: Standards for Mathematical Practice