Using SBA Summative Results for Long Term Planning

Katie McGrath, Director
Jose Dorado and Lisa Ward, Coordinators
Division of Instruction
Summer Institute 2016, Local District West

http://tinyurl.com/8-5-16LDWest

https://drive.google.com/folderview?
id=0B9HyE7VRkR1vNnY2MEtaQ3RjS0U&usp=sharing
made into tiny url
Introductions
Thank yous
Handouts
Workshop Goals

Participants will study the SBA *system* to...
- Know the role of summative assessments
- Inform the instructional process
- Access supplementary resources
- Consider long-term planning using SBA IABs

Read goals
Let’s lower our affective filters....
A variety of models will be presented to help kick off the discussion on SBAC, you can choose which works best for you in your PD with teachers.

Essential Question: Where does the summative assessment find its place and what role does it play within a system?

Triangle assessment model: explain axes, types of assessments
Arrow towards a target model, pass through the loops of the varieties of assessments to stay on target.
Emphasize system
Metaphors speak to many people. How might you finish this prompt? Share with a partner (2 min).
Click, share one response is the tip is the score report, the body is composed of the aligned targets, standards, lessons, tasks and resources.
• How do you uncover the body of the iceberg?
• Provide a general direction—we must dig deeper to determine cause
 – Focus on groups, programs, and disaggregation
• Rarely provide definitive answers, but raise many questions, allowing reflection on context and practice
• Provide an entry point into a
Data Examination Is Complicated

Comprehensive, complex, and difficult process

Not a checklist
Not meant to be completed at a single staff meeting or professional development event

Focus on improving learning
Not solely about increasing scores

Collaborative process that requires:
Another model that you can use with your staff: this model shows some other evidence that you might want to put at the center of inquiry. This model shows how you can move from the claims to the targets, achievement level descriptors, and other specifics.
Another model, starting with the Domain, can give clarity for the process of inquiry.
Another model that can show implications for classroom instruction from our assessment results. What evidence do we have from students, is it aligned with the standards and the assessment. What is the correlation between student response and achievement level?
How do you currently use statewide summative assessment results in the curriculum, instruction, and assessment planning process within your school? Talk with a partner, what is the place and purpose of the summative assessment in your school right now?

Whole group share, if time allows.
Supporting Documentation

Content Specifications
Item Specifications
Blueprints
Achievement Level Descriptors (ALDs)
Claim Descriptors
Score Reports
Additional Data

Materials available from SBAC on caaspp, some are provided in your packet.
Review a student score: Overall score, Level, Claims, “Standard” definition SBAC uses: bar at which the test was set.
Students receive a score from 2,000 to 3,000.
Achievement Level Descriptors

- Text descriptions of the knowledge, skills, and processes demonstrated by students at each level.
- Four types of levels or categories of performance
 - Policy and Content
 - Range
 - Threshold
 - Reporting

http://www.smarterbalanced.org/assessments/scores/

Achievement Level Descriptors tell what the students should know and be able to do, it gives the specifics for that grade level for that standard. Helps teachers analyze the data.
A student’s overall SBAC score in mathematics is broken down into different areas known as Claims. Briefly introduce claims as you click through. We’ll go into the Claims in depth in a future slide.

Intro: Daniel Kim, developed this protocol with Lisa Saldivar (LDS) How were you thinking about developing this protocol?
Intro: Lisa and Jose
The following is a description of each of those math claims. As a Math Team, our prediction last year was that students would be the most successful in the area of claim 1, concepts and procedures, and that they would struggle the most with claims 2 and 4 (problem solving, modeling, and data analysis), followed by claim 3, communicating reasoning.

Traditionally, students have always had a hard time with word problems and society's aversion to problem solving has been well documented.
And then we got the scores last year, and again this year. This is the percentage of students testing at or above standard by Claim…and we were blown away, because as you can see here for 2015-2016, the very claim that we thought for sure that students would be the most successful with, Claim 1, was the lowest of all the claims. Not just at one grade, but in every grade tested.
Here’s another way to look at this year’s data, by the percentage of students Below Standard. Claim 1, Concepts and Procedures, ended up being the claim that had the highest percentage of students performing below standard. Not just at one grade, but in every grade tested.
You can choose which slide you would like to use, we’ve included both in the deck.
Why? It didn’t make sense to us. A big part of Claim 1 was about procedures and fluency and that’s what we saw teachers teaching most of the time. This question of WHY? will lead us in our exploration.
Take out HO #2 “Mathematics Summative Assessment Blueprint”.

So I went looking for answers and the first thing I checked out was the assessment targets on the SBA Blueprint. As many of us know, Smarter Balanced has broken down each claim into a number of targets. The claim one assessment targets are the cluster headings of the content standards, lettered in alpha order from Operations for Algebraic Thinking through Geometry. And then the order changes when the priority and supporting clusters are separated. Note the CAT (computer adapted test) and the PT (Performance Task). Why don’t any of these content cluster headings appear in the Performance Task? Because the Performance Task assesses the Standards for Mathematical Practice, and it generally uses content standards from a previous grade. Hmmm...
As we thought about the cluster headings, and the standards that fall under each cluster, we wondered if students struggled with claim 1 items because the content of the standards is more demanding.

For example, in grade 2, the old CST standard NS 2.2, students are...As you can see the difference between the two is black and white.
Or maybe our students struggled with claim one items because our teachers’ instruction around the standards didn’t exhibit the shift of rigor, which calls for them to pursue, with equal intensity, conceptual understanding, procedural skills and fluency, and application.
The blueprint also reminded me that the targets have been categorized as priority and supporting clusters. The California standards refer to the priority clusters as major clusters. We wondered if teacher’s instruction focused on the major clusters of the grade level.
The shift of Focus, calls for teachers to concentrate on the major clusters of each grade. As a matter of fact, the CCSS Publisher’s Criteria states that 65%-85% of class time, with K-2 near the upper end of that range, should be devoted to the major work of the grade.
There was one last thing that the blueprint made us consider. As you can see, the blueprint indicates that Claim 1 questions are at a DOK level 1 and 2. I had always thought that DOK level 1 and 2 questions were easy to answer...maybe we were wrong.

(Know that at this point in the slide deck, we have an activity to sort questions by DOK. In the interest of time, we won’t be doing it today, but the slides are in the deck and the materials are in the link of the tiny url, if you want to check it out.)
Many of you may already be familiar with the SBAC content specifications. As you know it’s an incredible resource to learn more about the SBAC claims. They’re in the Google drive for your reference. But if you’re looking for more than just in depth explanation of the claims and want to see how test writers translate the claims into actual items, than the Item specifications is one of the best places to look. Let me give you a brief overview of it.

Take out HO #3 “Grade 4 Mathematics Item Specifications”
Accessing the SBAC Specifications

http://www.smarterbalanced.org/smarter-balanced-assessments/

The item specifications can be downloaded off of the SBAC website.
One thing to note is that for claim 1, there are specifications for each target or cluster heading. Claims 2-4, because they address math practices, are available by grade level spans since the math practices apply k-12.
Go ahead and pull out your hard copy of the “Grade 4 Mathematics Item Specifications” (HO #3). On page 1, you’ll find an elaboration of the target, the cluster heading, all of the ccss standards that fall under that cluster heading, and related standards from the previous grade and next grade. It’s hard to pass up a teachable moment, so just quick reminder here that one of our three shifts in elementary math was the shift of coherence.
The shift of coherence calls for teachers to not only connect and relate standards within a grade level, but across grade levels as well.
Skipping to page 2, at the very bottom, you’ll notice a section of vocabulary. The words listed here are the ones that SBAC will expect students to know.
The remainder of the item specs has several task models for each standard of each target or cluster heading. Essentially, each model provides details as to what an SBAC item could look like for each specific standard.

Before we’re tempted to go down the road of “Teaching to the Test,” we want to point out:

1. There’s no way that one can anticipate and expose students to every possible iteration of question and to do so is pointless and detrimental.

2. The Item Specifications can be a powerful tool to help teachers learn more about the content they teach and align their instruction. My colleague, Jose, is going to show you how.
Take out HO #4 Recording Template
Explain the template and the tools they will need (scissors, glue, highlighter, target packet)
Explain what each of the categories is and why it is there.
The process starts back at the blueprint because the blueprint gives us some initial information about what SBAC assesses at each grade level. As Lisa mentioned, there are priority clusters and supporting clusters, the priority clusters being where we should spend most of our instructional time. We are going to look at one of our priority clusters for 4th grade, Target F. Have participants take out their Target F packet and notice where it says Target F. (HO2)
I am going to take you through a little bit of arts and crafts today. As you might have noticed, these Item Specifications are quite lengthy and can be cumbersome. We decided to cut parts of it out to really focus in on some of the most important pieces of the specs. We find that when teachers initially look at these packets, they become overwhelmed, so cutting parts of it out and only working with specific pieces has made these specs more manageable.

Note the area under the content domain that specifies the target and target descriptor. This target is a statement that describes the knowledge and skills that cross over a cluster of standards. Please cut out the entire box that contains the target and target descriptor and glue under the word “target” on your recording template.
Now take a minute to read the target and the target descriptor and highlight what it tells you students need to know, understand, and be able to do. In other words, what is important for students to understand and what is important for teachers to teach?

After giving them time to highlight:

1) Talk at your table- What did you highlight and what might instruction of this look like?

2) Pull up Target F on slide as an example of what might have been highlighted (specifically call out using inequality signs/equal signs, the use of visual models such as number lines)

3) Discuss that the target descriptor give us more information about the target, but that to fully understand what the target entails, item specs will bring more clarity

Target F [m]: Extend understanding of fraction equivalence and ordering. (DOK 1, 2)

Tasks for this target will ask students to recognize and generate equivalent fractions or compare fractions with different numerators and different denominators, **sometimes using** $<$, $=$, and $>$. These may include the use of visual fraction models or number lines to tap student understanding of equivalence and relative size with respect to benchmarks, such as $1/2$.
2a. Cut out the grade level standards coded to this target and glue under "Standards" on the template.

Now let’s dig a little deeper into these targets by looking at the standards that are assessed through these targets. 4.NF.1 and 2 are coded to Target F. Please find the box with the grade level standards, cut out the entire box and glue it under the word Standards on the Recording Template.
Again, take a minute to read through the standards and highlight what students need to know, understand, and be able to do. Think about how this added to your understanding about the assessment target.

1) Talk at your table about what you highlighted—did you gain further understanding about the target from the language of the standards?

2) Pull up NF.1 and 2 on slide as an example. Here is some of the language that I highlighted.

3) Reading the standards starts to create a more complete picture of the assessment target—we now see specific strategies that students have to understand and be able to apply to target items. These include creating common denominators or numerators to compare fractions in addition to the one we previously saw of using benchmark fractions to compare fractions.
Now, we are going to dig even deeper into these assessment targets by looking at the various task models. In the specifications, we can see actual problem types and problem structures that can provide more insight into the assessment targets. We call these outcomes or destination because this is ultimately what students have to know, understand, and be able to do. Let’s turn to the second page from the back to see one such task model. On the right hand side you will see an example. Please cut out the entire right hand side and glue it under outcomes/destination on your recording template.
Take a minute to look over this task model and highlight anything that provides further information about what students have to know, understand, and be able to do. Think specifically about big ideas students might need to know, problem types or structures they might encounter, strategies they will be encouraged to use, and content they should be comfortable with. Highlight anything that you feel a teacher should address in his/her instruction in order to ensure our students have a deep understanding of this task model.

2) Have them turn and talk about what they found to be important after highlighting.

3) Did looking at the stimulus guidelines and example stem give you a new level of understanding about the CCSS expectations for this target and standard? How so?

What are some noticing you had about this example? (Specifically, one of these cannot be solved finding a common denominator and students will need another strategy such as reasoning about its size and renaming fractions to determine equivalency; Also notice that finding a common denominator is not the most efficient strategy for all of these problems. Let’s look at the 2nd problem. We could find a common denominator by multiplying 4 x 25 and generating an equivalent fraction of 75/100 or we can reason about 50/100 and rename it as 1/2, thereby finding that 50/100 is not equivalent to 3/4. Our goal as teachers is to develop deep number sense in students and when they have this number sense, they can see that various strategies lend themselves to specific problem types, making one more efficient than another depending on the given problem.
At this point, we want to list out the content, specific skills, and strategies that we now understand from studying the target, standards, and task model. These are going to serve as some of our look-fors when we begin to align our curriculum and resources. I am going to share some skills, strategies, and content that I found looking at the previous task model. Feel free to write them down under “Findings” as I go through them.

Listed in the prompt feature and guidelines
2-3 are listed in the stimulus guidelines
4-8 are seen in the problem itself

I also noticed that some of the skills and content that I saw in the Item Specs were some of the same skills and content that were outlined in the CA Math Framework. Explain examples:
1) Students will develop understanding of multiplying numerator and denominator by the same number (equivalent to multiplying by 1) but will develop understanding of this through pictures and concrete models, not the algorithm
2) Renaming fractions as a strategy, not a skill
Now, you can do this a second time, and add to your list of Findings. Today, we are going to stop after one example and move into the Implications for Instruction portion.
Clarify that participants are looking for new information - what can they add to their list of “Findings” of what students need to know and be able to do
3f. Record your new learning under “Findings” on the template.

FINDINGS

- Identify equivalent fractions within given pairs of fractions that have different numerators and different denominators.
- Find equivalent fractions for fractions greater than 1 or less than 1.
- Recognize equivalence between fractions with denominators that are, or are multiples of, 2, 3, 4, 5, 6, 8, 10, 12, or 100.
- Find common denominators to determine equivalence.
- Complete multiple problems within one table.
- Recognize when a fraction is NOT equivalent.
- Recognize fractions may be equivalent factors or multiples of each other.
- Rename fractions to determine equivalent fractions to compare two fractions with different numerators and different denominators. They compare students apply their new understanding of equivalent fractions to compare two fractions with different numerators and different denominators.

Examples: Comparing Fractions

1. Students might compare fractions to benchmark fractions—for example, comparing $\frac{3}{5}$ when comparing $\frac{3}{5}$ and $\frac{2}{3}$. Students see that $\frac{3}{5} > \frac{4}{5}$ and that since $\frac{2}{3} = \frac{4}{6}$ and $\frac{3}{5} = \frac{1}{5}$, it must be true that $\frac{4}{6} > \frac{3}{5}$.

Add to the list: Benchmark fractions as a strategy.
4a. Align instruction and resources.
4b. Look at the lessons in your primary curriculum that are coded for your chosen target. [http://achieve.lausd.net/Page/6021]

Take out HO #5 “Curriculum Map for Grade 4, Number and Operations – Fractions”. Show participants where to look to see what curriculum resources line up with the chosen target. For Target F, it is lessons 8-3 – 8-5 and 8-6 – 8-8
As we know, teachers are always struggling to find enough instructional time. One way to address this is to ensure that every lesson you teach is aligned to the content and skills, or standards, that students must know. If we do not look closely at our lessons, and we simply turn the page in our textbook, it is possible that we spend time on concepts or skills that are not part of our grade level standards. As you look through these next few lessons, think about what we have listed under “Findings”, which are things we determined students need to know and teacher need to teach. Then determine if these lessons, with or without adaptations, should be included in our instruction.

You can also consider these three questions as you look through the lessons. These questions will get you thinking about the quality of the lessons and how they support the development of students’ understanding of fractions.
Lesson 8-5

Look at 8-5 as a group. Have them refer back to their findings and table talk about their initial ideas around the content/strategy being presented.

At first glance, this seems like a skill that students need to know. It is one that has always been taught when teaching fractions- this idea of simplifying or reducing fractions. Let’s think back to our findings and task models.

1) Is this a skill that students might need to be successful on this target (yes-although they were not directly assessed on “simplifying” fractions, it is a skill that they might need to find a common denominator (remember the problems 50/100=3/4 and 6/8=75/100- if students could rename, as CCSS calls it, these fractions to their simplest form, they would see that 1/2 is not ¾ and ¾=3/4)

• The concern with this lesson then might not be the skill or content it is teaching, but rather how it is being presented... as an isolated skill. When we develop skills in students, we want to give them a reason for learning it. In this case, it is presented as a procedure to follow, rather than developing any understanding as to why we might use this. Discussing “simplest form” or renaming fractions as a strategy for finding equivalent fractions will help students see how this skill fits in their understanding about equivalent fractions.
When adding supplemental resources, think about what additional resources or lessons are needed to ensure students can access the necessary content knowledge and skills addressed in the target?

Lesson 8-5- We decided it was a lesson we could use, but that we wanted to introduce “simplifying” or renaming fractions as a strategy, rather than an isolated skill. We also want to ensure we have problems for students to practice that encourage this strategy as an efficient way for solving certain problems.
Reflections about the Process

- How did this process deepen your understanding about the standards?

- How did this process deepen your understanding about the SBAC assessment?

- How does this process help you think about assisting teachers in making better-informed instructional choices?

Think, pair, share at table.
Highlight BEAL training for Performance Tasks and the implications for instruction, see your local district math coordinator.

Other Resources Available in their packet:

HO #7: Mathematics Interim Assessment Blocks, 2016-2017 Blueprints
HO #8: Mathematics Interim Assessment Blocks 2016-2017 Revisions/Additions
HO #9: San Luis Obispo County Office of Education, SBAC Threshold Achievement Level Descriptors (ALD)
HO #10: Elementary Assessments at a Glance
Considerations for Long-term

How is collaborative inquiry incorporated and supported at your site?
How might this analytical protocol fit into your long-term planning?
How might additional resources be utilized?

Now let’s take a moment to review the CAP...
Comprehensive Assessment Program: District Assessments

<table>
<thead>
<tr>
<th>TITLE:</th>
<th>Comprehensive Assessment Program: District Assessments 2016-2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER:</td>
<td>MEM-6700.0</td>
</tr>
<tr>
<td>ISSUER:</td>
<td>Frances Gipson, Ph.D., Chief Academic Officer</td>
</tr>
<tr>
<td></td>
<td>Division of Instruction</td>
</tr>
<tr>
<td>DATE:</td>
<td>June 21, 2016</td>
</tr>
<tr>
<td>PURPOSE:</td>
<td>The purpose of this memorandum is to provide information about the District assessments for 2016-2017. This document specifies the District assessments by subject and/or course and eligible student population. It also provides the 2016-2017 assessment schedules in calendar form.</td>
</tr>
<tr>
<td>MAJOR CHANGES:</td>
<td>This is a new memorandum and it replaces reference guide REF-6507.1 Dynamic Indicators of Basic Early Literacy Skills (DIBELS) is no longer a required assessment for Transitional Kindergarten (TK). DIBELS and/or Text Reading Comprehension (TRC) remains required for K-5/6. The integrated unit assessment for grades 4 and 5 is no longer a required assessment. The Beacon.</td>
</tr>
</tbody>
</table>

Pass out Memo, or Elementary Required SBC Interim Assessment Blocks by Assessment Name (Attachment C)

Read
<table>
<thead>
<tr>
<th>Assessment</th>
<th>Grade(s)</th>
<th>Purpose</th>
<th>URL</th>
<th>Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIBELS, IDEL, TIER*</td>
<td>K-5/6</td>
<td>Assess early literacy skills and target instruction</td>
<td>http://dibels.org</td>
<td>(213) 241-5338</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>http://www.amplify.com/lausd/resources</td>
<td></td>
</tr>
<tr>
<td>District Interim</td>
<td>K-2</td>
<td>Assess student instructional levels</td>
<td>http://achieveslausd.net/cccs</td>
<td>(213) 241-5333</td>
</tr>
<tr>
<td>Math and ELA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBA IAB**</td>
<td>3-5/6</td>
<td>Assess student learning of CA content standards</td>
<td>http://achieveslausd.net/Page/9797</td>
<td>(213) 241-4104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CELDT, ELPAC***</td>
<td>2-5/6, EL</td>
<td>Identify proficiency levels for ELL learners</td>
<td>http://achieveslausd.net/Page/7583</td>
<td>(213) 241-4104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading Inventory</td>
<td>4-6, EL</td>
<td>Required for reclassification purposes</td>
<td>http://achieveslausd.net/mmed#sign-content</td>
<td>(213) 241-5582</td>
</tr>
<tr>
<td></td>
<td>Twice a year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oct. 24-Dec. 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>April 24-May 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBA Summative, CAA,</td>
<td>3-5/6</td>
<td>Assess student learning of CA content standards</td>
<td>http://achieveslausd.net/Page/7580</td>
<td>(213) 241-4104</td>
</tr>
<tr>
<td>STAM**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA Physical Fitness</td>
<td>5</td>
<td>Assess student fitness</td>
<td>http://achieveslausd.net/Page/6354</td>
<td>(213) 241-4104</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science CST, CMA, CAPI**</td>
<td>5</td>
<td>Assess student learning of CA content standards</td>
<td>http://achieveslausd.net/testing</td>
<td>(213) 241-4104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refer to Handout in the Packet: Elementary Assessments at a Glance
Katie: Thank you!